Abstract

To address the problems of tiny objects and high resolution of object detection in remote sensing imagery, the methods with coarse-grained image cropping have been widely studied. However, these methods are always inefficient and complex due to the two-stage architecture and the huge computation for split images. For these reasons, this article employs YOLO and presents an improved architecture, NRT-YOLO. Specifically, the improvements can be summarized as: extra prediction head and related feature fusion layers; novel nested residual Transformer module, C3NRT; nested residual attention module, C3NRA; and multi-scale testing. The C3NRT module presented in this paper could boost accuracy and reduce complexity of the network at the same time. Moreover, the effectiveness of the proposed method is demonstrated by three kinds of experiments. NRT-YOLO achieves 56.9% mAP0.5 with only 38.1 M parameters in the DOTA dataset, exceeding YOLOv5l by 4.5%. Also, the results of different classifications show its excellent ability to detect small sample objects. As for the C3NRT module, the ablation study and comparison experiment verified that it has the largest contribution to accuracy increment (2.7% in mAP0.5) among the improvements. In conclusion, NRT-YOLO has excellent performance in accuracy improvement and parameter reduction, which is suitable for tiny remote sensing object detection.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.