Abstract

Simple SummaryReactivation of the fetal cardiac gene program, such as those encoding atrial and brain natriuretic peptides (ANP and BNP, respectively), is a characteristic feature of failing hearts. We previously revealed that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also called repressor element-1-silencing transcription factor (REST), plays a crucial role in the transcriptional control of ANP, BNP and other fetal cardiac genes through collaboration with various other transcription factors to maintain physiological cardiac function and electrical stability. Increased production of ANP and BNP prevents the progression of heart failure, but reactivation of Gαo and fetal-type cardiac ion channels (T-type Ca2+ and HCN channels) leads to deteriorated cardiac function and lethal arrhythmias observed in mice with disturbed NRSF function. Epigenetic regulators with which NRSF forms a complex modify histone acetylation and methylation, thereby participating in NRSF-mediated transcriptional regulation. Further comprehensive studies will lead to clarification of the molecular mechanisms underlying the development of cardiac dysfunction and heart failure.Reactivation of fetal cardiac genes, including those encoding atrial natriuretic peptide (ANP) and brain natriuretic peptide (BNP), is a key feature of pathological cardiac remodeling and heart failure. Intensive studies on the regulation of ANP and BNP have revealed the involvement of numerous transcriptional factors in the regulation of the fetal cardiac gene program. Among these, we identified that a transcriptional repressor, neuron-restrictive silencer factor (NRSF), also named repressor element-1-silencing transcription factor (REST), which was initially detected as a transcriptional repressor of neuron-specific genes in non-neuronal cells, plays a pivotal role in the transcriptional regulation of ANP, BNP and other fetal cardiac genes. Here we review the transcriptional regulation of ANP and BNP gene expression and the role of the NRSF repressor complex in the regulation of cardiac gene expression and the maintenance of cardiac homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call