Abstract

Atherosclerosis-related cardiovascular diseases are leading causes of mortality worldwide, characterized by the development of endothelial cell dysfunction, increased oxidized low-density lipoprotein uptake by macrophages, and the ensuing formation of atherosclerotic plaque. Local blood flow patterns cause uneven atherosclerotic lesion distribution, and endothelial dysfunction caused by disturbed flow is an early step in the development of atherosclerosis. The present research aims to elucidate the mechanism underlying the regulation of Neuropilin 2 (NRP2) under low shear stress (LSS) in the atheroprone phenotype of endothelial cells. We observed that NRP2 expression was significantly upregulated in LSS-stimulated human umbilical vein endothelial cells (HUVECs) and in mouse aortic endothelial cells. Knockdown of NRP2 in HUVECs significantly ameliorated cell apoptosis induced by LSS. Conversely, overexpression of NRP2had the opposite effect on HUVEC apoptosis. Animal experiments suggest that NRP2knockdown markedly mitigated the development of atherosclerosis in Apoe-/- mice. Mechanistically, NRP2knockdown and overexpression regulated PARP1 protein expression in the condition of LSS, which in turn affected the expression of apoptosis-related genes. Moreover, the upstream transcription factor GATA2 was found to regulate NRP2 expression in the progression of atherosclerosis. These findings suggest that NRP2 plays an essential proatherosclerotic role through the regulation of cell apoptosis, and the results reveal that NRP2 is a promising therapeutic target for the treatment of atherosclerotic disorders.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.