Abstract
Graph Neural Networks (GNNs) have achieved promising results for semi-supervised learning tasks on graphs such as node classification. Despite the great success of GNNs, many real-world graphs are often sparsely and noisily labeled, which could significantly degrade the performance of GNNs, as the noisy information could propagate to unlabeled nodes via graph structure. Thus, it is important to develop a label noise-resistant GNN for semi-supervised node classification. Though extensive studies have been conducted to learn neural networks with noisy labels, they mostly focus on independent and identically distributed data and assume a large number of noisy labels are available, which are not directly applicable for GNNs. Thus, we investigate a novel problem of learning a robust GNN with noisy and limited labels. To alleviate the negative effects of label noise, we propose to link the unlabeled nodes with labeled nodes of high feature similarity to bring more clean label information. Furthermore, accurate pseudo labels could be obtained by this strategy to provide more supervision and further reduce the effects of label noise. Our theoretical and empirical analysis verify the effectiveness of these two strategies under mild conditions. Extensive experiments on real-world datasets demonstrate the effectiveness of the proposed method in learning a robust GNN with noisy and limited labels.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.