Abstract

We study the low-energy properties of a Hubbard chain of finite size N_C connected to two noninteracting leads using the numerical renormalization group (NRG) method. The results obtained for N_C = 3 and 4 show that the low-lying eigenstates have one-to-one correspondence with the free quasi-particle excitations of a local Fermi liquid. It enables us to determine the transport coefficients from the fixed-point Hamiltonian. At half-filling, the conductance for even N_C decreases exponentially with increasing U showing a tendency towards the development of a Mott-Hubbard gap. In contrast, for odd N_C, the Fermi-liquid nature of the low-energy states assures perfect transmission through the Kondo resonance. Our formulation to deduce the conductance from the fixed-point energy levels can be applied to various types of interacting systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call