Abstract

Simple SummaryThe NRF2 pathway represents one of the most intriguing pathways that promotes chemo- and radioresistance of neoplastic cells. Increasing findings suggest that the NRF2 signaling can be modulated by multiple epigenetic factors such as noncoding RNAs, which influence a large number of oncogenic mechanisms, both at transcriptional and at post-transcriptional levels. As a consequence, the identification and characterization of specific noncoding RNAs as biomarkers related to oxidative stress may help to clarify the relationship between them and NRF2 signaling in the tumor context, in terms of positive and negative modulation, also referring to their intersection with other NRF2 crosstalking pathways. In this review, we summarize the recent updates on NRF2 network regulation by noncoding RNAs in tumors, thus paving the way toward the potential translational role of these small RNAs as key tumor biomarkers of neoplastic processes.Nuclear factor erythroid 2-related factor 2 (NRF2) is the key transcription factor triggered by oxidative stress that moves in cells of the antioxidant response element (ARE)-antioxidant gene network against reactive oxygen species (ROS) cellular damage. In tumors, the NRF2 pathway represents one of the most intriguing pathways that promotes chemo- and radioresistance of neoplastic cells and its activity is regulated by genetic and epigenetic mechanisms; some of these being poorly investigated in cancer. The noncoding RNA (ncRNA) network is governed by microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) and modulates a variety of cellular mechanisms linked to cancer onset and progression, both at transcriptional and post-transcriptional levels. In recent years, the scientific findings about the effects of ncRNA landscape variations on NRF2 machines are rapidly increasing and need to be continuously updated. Here, we review the latest knowledge about the link between NRF2 and ncRNA networks in cancer, thus focusing on their potential translational significance as key tumor biomarkers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.