Abstract

Nitric oxide is a pleiotropic free radical produced by three nitric oxide synthases (NOS1–3), of which inducible NOS2 is involved in tumor initiation and progression. In this study, RNA-seq, ChIP-seq and qRT-PCR experiments combined with bioinformatic analyses showed that NRF2 is a repressor of NOS2 gene by maintaining a distal enhancer located 22 kb downstream of TSS in an inactive state. Deletion of NRF2 leads to activation of the enhancer, which exerts a pioneering function before it is fully activated. Specifically, NRF2 controls the expression of NOS2 in response to intracellular oxidative stress and extracellular oxygen pressure. We found that abrogation of NOS2 expression by siRNAs partially reduced the ability of WT Panc-1 cells to form 3D spheroids, but strongly reduced the formation of 3D spheroids by NRF2-depleted Panc-1 cells. Mechanistically, this effect correlates with the finding that NOS2 and nitric oxide stimulate epithelial-to-mesenchymal transition in NRF2-depleted Panc-1 and MIA PaCa-2 cells. We also found that knockdown of NOS2 leads to blockade of 3D matrigel invasion of NRF2-depleted PDAC cells, demonstrating that a short-circuit in the reciprocal regulation of NOS2 and NRF2 attenuates the malignancy of PDAC cells. In summary, we show for the first time that: (i) NRF2 is a suppressor of NOS2 in pancreatic cancer cells; (ii) NRF2 binds to and inactivates an enhancer located 22 kb downstream of TSS of the NOS2 gene; (iii) activation of NOS2 requires suppression of NRF2; (iv) NOS2 is required for NRF2-depleted Panc-1 cells to maintain their malignancy and invasiveness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.