Abstract

During orthodontic treatment, mechanical stretch serves a crucial function in osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Up-regulated reactive oxygen species (ROS) level is a result of cyclic mechanical stretch in many cell types. Nuclear factor erythroid-2-related factor-2 (Nrf2) is a master regulator in various antioxidants expression. However, it is not known whether cyclic mechanical stretch could induce the ROS generation in PDLSCs and whether Nrf2 participated in this process. The present study was aimed to investigate the role of Nrf2 in PDLSCs under cyclic mechanical stretch. Our results showed that cyclic mechanical stretch increased ROS level and the nuclear accumulation of Nrf2 during osteoblast differentiation. Knocking down Nrf2 by siRNA transfection increased ROS formation and suppressed osteogenic differentiation in PDLSCs. T-BHQ, a Nrf2 activator, promoted the osteogenic differentiation in PDLSCs under cyclic mechanical stretch, and improved the microstructure of alveolar bone during orthodontic tooth movement in rats by employing micro-CT system. Taken together, Nrf2 activation was involved in osteogenic differentiation under cyclic mechanical stretch in PDLSCs. T-BHQ could promote the osteogenic differentiation in vitro and in vivo, suggesting a promising option for the remodeling of the alveolar bone during orthodontic tooth movement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call