Abstract
The freshwater red-eared slider turtle, Trachemys scripta elegans, experiences weeks to months of anoxia at the bottom of ice-locked bodies of water in the winter. While this introduces anoxia-reoxygenation cycles similar to the ischemia-reperfusion events that mammals experience, T. s. elegans does not suffer any apparent tissue damage. To survive prolonged anoxia and prevent cellular damage associated with reactive oxygen species, these turtles have developed numerous adaptions, including highly effective antioxidant defenses. Herein, we examined the subcellular localization and protein expression of nuclear factor erythroid-2-related factor 2 (Nrf2), a central transcription factor responsible for modulating cellular antioxidant responses, that was found to be upregulated and localized to the nucleus in anoxic turtles. Additionally, we examined protein levels of glutathione S-transferases (GSTs) and manganese superoxide dismutase (MnSOD) antioxidant enzymes in anoxic liver, kidney, heart, and skeletal muscle tissues. MnSOD levels were significantly higher in heart and muscle during anoxia, and the four GST isozymes (GSTK1, GSTT1, GSTP1, and GSTM3) were elevated in a tissue-specific manner during anoxia and/or aerobic recovery. Together, these results indicate that Nrf2 is likely involved in activating downstream antioxidant genes in response to anoxic stress. These results provide a possible Nrf2-mediated transcriptional mechanism that supports existing findings of enhanced antioxidant defenses that allow T. s. elegans to cope with anoxia-reoxygenation cycles, and subsequent oxidative stress.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Zoology Part A: Ecological and Integrative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.