Abstract
The overall function of sleep is hypothesized to provide “recovery” after preceding waking activities, thereby ensuring optimal functioning during subsequent wakefulness. However, the functional significance of the temporal dynamics of sleep, manifested in the slow homeostatic process and the alternation between non–rapid eye movement (NREM) and REM sleep remains unclear. We propose that NREM and REM sleep have distinct and complementary contributions to the overall function of sleep. Specifically, we suggest that cortical slow oscillations, occurring within specific functionally interconnected neuronal networks during NREM sleep, enable information processing, synaptic plasticity, and prophylactic cellular maintenance (“recovery process”). In turn, periodic excursions into an activated brain state—REM sleep—appear to be ideally placed to perform “selection” of brain networks, which have benefited from the process of “recovery,” based on their offline performance. Such two-stage modus operandi of the sleep process would ensure that its functions are fulfilled according to the current need and in the shortest time possible. Our hypothesis accounts for the overall architecture of normal sleep and opens up new perspectives for understanding pathological conditions associated with abnormal sleep patterns.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.