Abstract

BackgroundNuclear receptor binding protein 1 (NRBP1) and ATP-binding cassette subfamily G member 2 (ABCG2) was the gout risk gene and high-capacity urate exporter respectively. However, the relationship between NRBP1 and ABCG2 and the underlying molecular mechanism contributing to these associations are unknown. MethodsFirstly, the efficiency of the overexpression and knockdown of NRBP1 was confirmed by western blot. Next, the effect of NRBP1 overexpression and knockdown on the expression of ABCG2, organic anion transporter 1 (OAT1), glucose transporter 9 (GLUT9) and urate transporter 1 (URAT1) was detected by qRT-PCR and western blot. At the same time, the cellular location of ABCG2 and its expression after NRBP1 overexpression and knockdown was tested by immunofluorescence (IF) staining. Then, the mechanism of NRBP1 modulates ABCG2 expression was evaluated by western blot with or without the β-catenin inhibitor (21H7). ResultsThe lentivirus system was used to generate stable NRBP1 overexpression, while the plasmids carrying a NRBP1 siRNA was generated to knockdown NRBP1 expression in HK-2 cells. Meanwhile, the overexpression of NRBP1 significantly decreased the mRNAs and proteins expression of GLUT9 and URAT1, while the knockdown of NRBP1 increased the mRNAs and proteins expression of ABCG2 significantly. In addition, the NRBP1 modulates the expression of ABCG2 was by ctivating the Wnt/β-catenin pathway in HK-2 cells according to the IF and western blot results. ConclusionTaken together, our study demonstrated that NRBP1 inhibition played an essential role in attenuating hyperuricemia and gout by upregulation of ABCG2 via Wnt/β-catenin signaling pathway in HK-2 cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call