Abstract

The Beclin 1-Vps34 complex, the core component of the class III phosphatidylinositol-3 kinase (PI3K-III), binds Atg14L or UVRAG to control different steps of autophagy. However, the mechanism underlying the control of PI3K-III activity remains elusive. Here we report the identification of NRBF2 as a component in the specific PI3K-III complex and a modulator of PI3K-III activity. Through its MIT domain, NRBF2 binds Atg14L directly and enhances Atg14L-linked Vps34 kinase activity and autophagy induction. NRBF2 deficient cells exhibit enhanced vulnerability to ER stress that is reversed by re-introducing exogenous NRBF2. NRBF2 deficient mice develop focal liver necrosis and ductular reaction, accompanied by impaired Atg14L-linked Vps34 activity and autophagy, though the mice show no increased mortality. Our data reveals a key role for NRBF2 in the assembly of the specific Atg14L-Beclin 1-Vps34-Vps15 complex for autophagy induction. Thus, NRBF2 modulates autophagy via regulation of PI3K-III and prevents ER stress-mediated cytotoxicity and liver injury.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call