Abstract

Nramp1 (natural resistance-associated macrophage protein one) regulates intracellular pathogen proliferation and macrophage inflammatory responses. Murine Nramp1 exhibits a natural polymorphism with alleles termed resistant and susceptible. Alleles restrict or allow the proliferation of intracellular pathogens, respectively. Structural predictions suggest that Nramp1 encodes the prototypic member of a transporter family. Nramp1 exhibits sequence identity to Nramp2, which regulates intestinal and reticulocyte iron uptake. Based on this sequence identity we have initiated experiments for Nramp1 to investigate its role in macrophage iron homoeostasis and using a transfection approach in the RAW264.7 murine macrophage-like cell line, which lacks a functional Nramp1 gene. Nramp1 expression supports increased acute cytoplasmic influx of iron, detected using the fluorescent iron sensor dye calcein. Analysis of the endogenous iron sensors, iron regulatory protein 1 and 2, reveals a greater flux of iron in Nramp1-expressing cells and in its exclusion from the cytoplasm. Other work supports the prediction that Nramp1 is a phosphoprotein and the extent of phosphorylation changes in response to inflammatory cytokines. Together these data support the hypothesis that control of intracellular iron homoeostasis is a vital element used by phagocytes to control the proliferation of intracellular pathogens.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call