Abstract

We aim to investigate the roles and mechanisms of NR3C2 in colorectal cancer (CRC). The expression of NR3C2 in CRC tumours and paired paracancerous tissues of 71 CRC patients and five CRC cell lines was detected by western blotting, immunohistochemistry and real-time reverse-transcription PCR. Moreover, NR3C2 was overexpressed or knocked down in CRC cells by lentiviral vector transfection. The proliferation of cells was measured by MTT, colony formation assay and flow cytometry. Glucose metabolism was assessed by detecting lactate production, glucose consumption and ATP production. Western blotting and real-time reverse-transcription PCR were used to detect the expression of AMPK, LDHA and HK2. The expression of NR3C2 was significantly decreased in CRC tumours compared to paracancerous tissues, which was correlated with distant metastasis, poor prognosis and advanced stages of CRC patients. Overexpressing NR3C2 suppressed the proliferation and promoted the G2/M cell cycle arrest of CRC cells. Furthermore, NR3C2 inhibited glucose metabolism by decreasing the expression of HK2 and LDHA. The phosphorylation of AMPK was also downregulated in CRC cells overexpressing NR3C2. This study demonstrated that NR3C2 inhibited the proliferation of CRC by inhibiting glucose metabolism and phosphorylation of AMPK which may serve as a therapeutic target for CRC.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call