Abstract

Endoplasmic reticulum (ER) stress can lead to cell death and worsen tissue damage during ischemic events. Nuclear receptor subfamily 3 group C member 2 (NR3C2) and lipocalin 2 (LCN2) are known to be associated with ER stress. In this study, we obtained a potential interaction between NR3C2 and LCN2 through bioinformatics. The primary objective was to investigate their roles and interactions in the context of ER stress in ischemic cerebral infarction (ICI). A mouse model of ICI was generated by middle cerebral artery occlusion, resulting in elevated levels of NR3C2 and LCN2 in brain tissues. NR3C2 bound to the LCN2 promoter, thereby activating its transcription. Either knockdown of LCN2 or NR3C2 led to an improvement in neurologic deficits in mice, along with a reduction in infract size, tissue damage, ER stress, inflammation, and cell apoptosis in their brain tissues. Similar results were reproduced in HT22 cells, where LCN2 or NR3C2 knockdown alleviated oxygen-glucose deprivation-induced ER stress, inflammation, and cell apoptosis while improving cell viability. However, the protective effects of NR3C2 knockdown were counteracted when LCN2 was overexpressed, both in vitro and in vivo. Overall, this study demonstrates that NR3C2 activates LCN2 transcription, ultimately promoting ER stress and cell apoptosis in the context of ICI.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.