Abstract

NMDA receptors (NMDARs) are important for the propagation of seizures. To understand the role of NR1 subunits in the propagation of seizures we knocked down the NR1 subunit by intracranial injection of antisense deoxyoligonucleotides (NR1-AS-ODNs) into the right hippocampus during a window of maximal seizure susceptibility in development. Control missense and sense ODNs followed by focal injection of NMDA (2.5-25 nmoles) into the hippocampal CA1 and sensorimotor cortex of P15 rat pups resulted in behavioral and electrographic (EEG) seizures. After NR1 knockdown, low- and high-doses produced little or no spike activity in the hippocampus and overlying sensorimotor cortex as predicted. Despite reduced activity in the hippocampal and cortical EEG, intracranial NMDA or peripheral kainate (KA)-induced seizures led to paradoxical cell death of CA1 neurons, which is not typically observed in this age group. Histological changes were modest or absent in the cortex away from the infusion site. Signal specificity of the targeted CA1 or cortex was observed in autoradiograms, immunohistochemistry and Western blots. After knockdown, Ca2+ influx was suppressed as both NMDA and muscimol-stimulated Ca2+ permeability of the immature CA1 was blocked in ex-vivo slices measured with FURA-2AM optical dye imaging. Data suggest that certain constituent levels of NMDA receptors distributed on excitatory and/or inhibitory interneurons may be developmentally required for survival of CA1 pyramidal neurons during a critical period when ictal activity is present. Moreover, selective NR1 subunit downregulation simultaneously reduces NMDA and GABA A receptor Ca2+ ion permeability properties that may contribute to a premature cell death mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call