Abstract
Nuclear quadrupole resonance (NQR), nuclear magnetic resonance (NMR) and nuclear gamma-resonance (NGR or Mossbauer Effect) methods are generally described as highly sensitive tools in studies of local electronic structure and symmetry in solid-state materials. This is due to high informativity in electronic structure investigations, high resolution in phase-structural diagnostics (down to nano-scale), possibility to study polycrystalline and complex compounds, and to the non-destructive character of these methods. As applied to Earth sciences, both NQR/NMR and Mossbauer spectroscopy methods contribute to mineralogical material science and mineral physics. Another important aspect is the fact that these methods, as demonstrated recently, belong to unique techniques suitable for on-line bulk mineralogical analysis. This includes remotely operated sensors used with conveyor systems in mining/materials handling and similar applications where real-time data collection/processing provides significant commercial benefits. These developments open new pathways for NQR/NMR and Mossbauer spectroscopy applications. Notably, NQR/NMR and Mossbauer effects are observed primarily on different nuclei-probes but provide similar information about the local properties of materials (hyperfine fields, electric field gradients and relaxation effects). This makes NQR/NMR and Mossbauer methods mutually complementary despite their significant technical differences. This paper includes examples of recent applications of NQR, NMR and Mossbauer spectroscopic tools to studies of copper-, antimony- and iron-containing sulfides, demonstrating how these methods can contribute to an improved understanding of geochemical problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.