Abstract

Aneuploidy is the most common characteristic of human cancer cells. It also causes genomic instability, which is involved in the initiation of cancer development. Various lines of evidence indicate that nicotinamide adenine dinucleotide(P)H quinone oxidoreductase 1 (NQO1) plays an important role in cancer prevention, but the molecular mechanisms underlying this effect have not yet been fully elucidated. Here, we report that ionizing radiation (IR) induces substantial aneuploidy and centrosome amplification in NQO1-deficient cancer cells, suggesting that NQO1 plays a crucial role in preventing aneuploidy. NQO1 deficiency markedly increased the protein stability of Aurora-A in irradiated cancer cells. Small interfering RNA targeting Aurora-A effectively attenuated IR-induced centrosome amplification concerned with aneuploidy in NQO1-deficient cancer cells. Furthermore, we found that NQO1 specifically binds to Aurora-A via competing with the microtubule-binding protein, TPX2 (targeting protein for Xklp2), and contributes to the degradation of Aurora-A. Our results collectively demonstrate that NQO1 plays a key role in suppressing IR-induced centrosome amplification and aneuploidy through a direct interaction with Aurora-A.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.