Abstract

Classical swine fever virus (CSFV) can dampen the host innate immunity by destabilizing IRF3 upon its binding with viral Npro. High mobility group box 1 (HMGB1), a non-histone nuclear protein, has diverse functions, including inflammation, innate immunity, etc., which are closely related to its cellular localization. We investigated potential mutual interactions between CSFV and HMGB1 and their effects on virus replication. We found that HMGB1 at the protein level, but not at mRNA level, was markedly reduced in CSFV-infected or Npro-expressing IPEC-J2 cells. HMGB1 in the nuclear compartment is anti-CSFV by promoting IFN-mediated innate immune response, as evidenced by overexpression of nuclear or cytoplasmic dominant HMGB1 mutant in IPEC-J2 cells stimulated with poly(I:C). However, CSFV Npro upregulates HMGB1 acetylation, a modification that promotes HMGB1 translocation into the cytoplasmic compartment where it is degraded by lysosomes. Ethyl pyruvate could downregulate HMGB1 acetylation and prevent Npro-mediated HMGB1 reduction. Inhibition of deacetylase HDAC1 with MS275 or by RNA silencing could promote Npro-mediated HMGB1 degradation. Taken together, our study elucidates the mechanism with which HMGB1 in the nuclei initiates antiviral innate immune response to suppress CSFV replication and elaborates the pathway by which CSFV uses its Npro to evade from HMGB1-mediated antiviral immunity through upregulating HMGB1 acetylation with subsequent translocation into cytoplasm for lysosomal degradation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.