Abstract

Today, cloud storage becomes one of the critical services, because users can easily modify and share data with others in cloud. However, the integrity of shared cloud data is vulnerable to inevitable hardware faults, software failures or human errors. To ensure the integrity of the shared data, some schemes have been designed to allow public verifiers (i.e., third party auditors) to efficiently audit data integrity without retrieving the entire users’ data from cloud. Unfortunately, public auditing on the integrity of shared data may reveal data owners’ sensitive information to the third party auditor. In this paper, we propose a new privacy-aware public auditing mechanism for shared cloud data by constructing a homomorphic verifiable group signature. Unlike the existing solutions, our scheme requires at least <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">t</i> group managers to recover a trace key cooperatively, which eliminates the abuse of single-authority power and provides non-frameability. Moreover, our scheme ensures that group users can trace data changes through designated binary tree; and can recover the latest correct data block when the current data block is damaged. In addition, the formal security analysis and experimental results indicate that our scheme is provably secure and efficient.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.