Abstract
Noncoding RNA (NcRNA)-protein interactions (NPIs) play fundamentally important roles in carrying out cellular activities. Although various predictors based on molecular features and graphs have been published to boost the identification of NPIs, most of them often ignore the information between known NPIs or exhibit insufficient learning ability from graphs, posing a significant challenge in effectively identifying NPIs. To develop a more reliable and accurate predictor for NPIs, in this article, we propose NPI-DCGNN, an end-to-end NPI predictor based on a dual-channel graph neural network (DCGNN). NPI-DCGNN initially treats the known NPIs as an ncRNA-protein bipartite graph. Subsequently, for each ncRNA-protein pair, NPI-DCGNN extracts two local subgraphs centered around the ncRNA and protein, respectively, from the bipartite graph. After that, it utilizes a dual-channel graph representation learning layer based on GNN to generate high-level feature representations for the ncRNA-protein pair. Finally, it employs a fully connected network and output layer to predict whether an interaction exists between the pair of ncRNA and protein. Experimental results on four experimentally validated datasets demonstrate that NPI-DCGNN outperforms several state-of-the-art NPI predictors. Our case studies on the NPInter database further demonstrate the prediction power of NPI-DCGNN in predicting NPIs. With the availability of the source codes (https://github.com/zhangxin11111/NPI-DCGNN), we anticipate that NPI-DCGNN could facilitate the studies of ncRNA interactome by providing highly reliable NPI candidates for further experimental validation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of computational biology : a journal of computational molecular cell biology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.