Abstract

ncRNAs play important roles in a variety of biological processes by interacting with RNA-binding proteins. Therefore, identifying ncRNA-protein interactions is important to understanding the biological functions of ncRNAs. Since experimental methods to determine ncRNA-protein interactions are always costly and time-consuming, computational methods have been proposed as alternative approaches. We developed a novel method NPI-RGCNAE (predicting ncRNA-Protein Interactions by the Relational Graph Convolutional Network Auto-Encoder). With a reliable negative sample selection strategy, we applied the Relational Graph Convolutional Network encoder and the DistMult decoder to predict ncRNA-protein interactions in an accurate and efficient way. By using the 5-fold cross-validation, we found that our method achieved a comparable performance to all state-of-the-art methods. Our method requires less than 10% training time of all state-of-the-art methods. It is a more efficient choice with large datasets in practice.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.