Abstract

The paper presents a benchmark suite of ten non-serial polyadic dynamic programming (NPDP) kernels, which are designed to test the efficiency of tiled code generated by polyhedral optimization compilers. These kernels are mainly derived from bioinformatics algorithms, which pose a significant challenge for automatic loop nest tiling transformations. The paper describes algorithms implemented with examined kernels and unifies them in the form of loop nests presented in the C language. The purpose is to reconsider the execution and monitoring of codes, typically used in past and current publications. For carrying out experiments with introduced benchmarks, we applied the two source-to-source compilers, PLuTo and TRACO, to generate cache-efficient codes and analyzed their performance on four multi-core machines. We discuss the limitations of well-known tiling approaches and outline future tiling strategies to generate effective tiled code by means of optimizing compilers for introduced benchmarks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call