Abstract
For a given graph G, the Separator Problem asks whether a vertex or edge set of small cardinality (or weight) exists whose removal partitions G into two disjoint graphs of approximately equal sizes. Called the Vertex Separator Problem when the removed set is a vertex set, and the Edge Separator Problem when it is an edge set, both problems are NP-complete for general unweighted graphs [6]. Despite the significance of planar graphs, it has not been known whether the Planar Separator Problem, which considers a planar graph and a threshold as an input, is NP-complete or not. In this paper, we prove that the Vertex Separator Problem is in fact NP-complete when G is a vertex weighted planar graph. The Edge Separator Problem will be shown NP-complete when G is a vertex and edge weighted planar graph. In addition, we consider how to treat the constant � 2 R
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.