Abstract

Biliary cholesterol secretion helps maintain cholesterol homeostasis; it is regulated by the cholesterol exporter adenosine triphosphate-binding cassettes G5 and G8 (ABCG5/G8) and the cholesterol importer Niemann-Pick C1-like 1 (NPC1L1). We studied another putative regulator of cholesterol secretion into bile, Niemann-Pick C2 (NPC2)--a cholesterol-binding protein secreted by the biliary system--and determined its effects on transporter-mediated biliary secretion of cholesterol. Mice with hepatic knockdown of Npc2 or that overexpressed NPC2 were created using adenovirus-mediated gene transfer; biliary lipids were characterized. The effects of secreted NPC2 on cholesterol transporter activity were examined in vitro using cells that overexpressed ABCG5/G8 or NPC1L1. Studies of mice with altered hepatic expression of NPC2 revealed that this expression positively regulates the biliary secretion of cholesterol, supported by the correlation between levels of NPC2 protein and cholesterol in human bile. In vitro analysis showed that secreted NPC2 stimulated ABCG5/G8-mediated cholesterol efflux but not NPC1L1-mediated cholesterol uptake. Consistent with these observations, no significant changes in biliary cholesterol secretion were observed on hepatic overexpression of NPC2 in ABCG5/G8-null mice, indicating that NPC2 requires ABCG5/G8 to stimulate cholesterol secretion. Analyses of NPC2 mutants showed that the stimulatory effect of biliary NPC2 was independent of the function of lysosomal NPC2 as a regulator of intracellular cholesterol trafficking. NPC2 is a positive regulator of biliary cholesterol secretion via stimulation of ABCG5/G8-mediated cholesterol transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.