Abstract

Nonionic polyacrylamide (NPAM) bismuth bromoxide (BiOBr) ultrathin hierarchical clusters have been prepared by a rapid solvothermal synthesis route. The formation mechanism of the NPAM-BiOBr ultrathin hierarchical clusters was based on the strong bridging role of NPAM between the bismuthyl nitrate (BiONO3) particles and subsequently results in tight junctions between BiOBr nanosheets. The structure, morphology and optical properties of the prepared samples were characterized by X-ray diffraction, Raman spectra, scanning electron microscopy, diffuse reflectance spectroscopy and photoluminescence. The photocatalytic performance of NPAM-BiOBr was evaluated by the degradation of Rhodamine B (RhB) and ciprofloxacin. The photocatalytic efficiency increased by 2.1 and 2.5 times of NPAM-BiOBr for RhB and ciprofloxacin decomposition, respectively. The enhanced photocatalytic activity of NPAM-BiOBr was attributed to the increased light absorption capacity and lower recombination rate of the photo-generated electron and hole pairs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.