Abstract

Abstract The stators of the first stage of a gas turbine are exposed to severe temperatures. The coolant streams introduced to prevent the stators from thermal damage further complicate the highly three-dimensional vane passage flow. Recent results have shown that the coolant streams injected for cooling the combustor also influence the flow physics and the cooling effectiveness in the first-stage stator vanes passage. However, the effects of changing the mass flowrate of these combustor coolant streams on the passage flowfield have not been studied. As understanding the coolant transport is necessary for analyzing changes in cooling effectiveness in the vane passage, detailed aerodynamic and thermal measurements along the whole vane passage are required. This two-part paper presents such measurements taken for a variety of combustor coolant and endwall film coolant flowrates. The experiments were conducted in a low-Mach number facility with engine-representative Reynolds numbers and large-scale high-level turbulence. The objective of the first part is to describe the flow that influences endwall and vane surface cooling effectiveness distributions, which are presented in the second part. The measurements show changes in the passage flowfield due to changes in both combustor coolant and endwall film coolant flowrates. Overall, the flow physics remains largely unaffected by changes in coolant flowrates except in the endwall-vane surfaces region where the combustor coolant flowrate dominates changes in coolant transport. This is shown to have a high impact on endwall and vane surface cooling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.