Abstract

Printable electronics is a subject of great interest for low-cost, facile and environmentally-friendly large scale device production. But, it still remains challenging for printable biosensor development. Herein, we present the fabrication of nozzle-jet printed flexible field-effect transistor (FET) glucose biosensor. The silver source-drain electrodes and ZnO seed layers were printed on flexible substrate by nozzle-jet printer followed by ZnO nanorods (ZnO NRs) synthesis and glucose oxidase (GOx) immobilization. Utilization of nozzle-jet printing methods resulted in highly reproducible electrodes with well-defined vertical grown ZnO NRs for high GOx loading and enhanced glucose sensing performance in a wide glucose detection range. The stability, anti-interference ability, reproducibility, reusability, and applicability in human serum samples were also assessed. Overall, biosensor fabrication using nozzle-jet printer will not only provide large scale production of highly reproducible electrodes but also reduce the fabrication cost. Additionally, printed electrodes can be modified accordingly for different analyte detection.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call