Abstract

A nozzle shape optimization study for a quasi-axisymmetric scramjet has been performed for a Mach 7.9 operating condition with hydrogen fuel, aiming at the application of a hypersonic airbreathing vehicle. In this study, the nozzle geometry which is parameterized by a set of design variables, is optimized for the single objective of maximum net thrust using an in-house CFD solver for inviscid flowfields with a simple force prediction methodology. The combustion is modelled using a simple chemical reaction code. The effects of the nozzle design on the overall vehicle performance are discussed. For the present geometry, net thrust is achieved for the optimized vehicle design. The results of the nozzle-optimization study show that performance is limited by the nozzle area ratio that can be incorporated into the vehicle without leading to too large a base diameter of the vehicle and increasing the external drag of the vehicle. This study indicates that it is very difficult to achieve positive thrust at Mach 7.9 using the basic geometry investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.