Abstract

Fluorizoline is a new synthetic molecule that induces p53-independent apoptosis, in several tumor cell lines and in primary leukemia cells, by selectively targeting prohibitins (PHBs). In this study, we describe how fluorizoline induces BCL-2 homology 3-only protein NOXA, without modulating the protein levels of anti-apoptotic B-cell lymphoma-2 (BCL-2) family members prior to caspase activation, as well as how it synergizes with the BCL-2 and BCL-XL inhibitor ABT-737 to induce apoptosis. Interestingly, fluorizolinetreatment triggers the activation of the integrated stress response (ISR) in HeLa and HAP1 cells, with increased eukaryotic translation initiation factor 2α phosphorylation, and induction of ATF3, ATF4, and CHOP. Moreover, PHB downregulation induces similar ISR activation and apoptosis as with fluorizoline treatment. In addition, we studied the essential role of the pro-apoptotic protein NOXA in fluorizoline-induced apoptosis and we describe its mechanism of induction in HeLa and HAP1 cells. Moreover, we identified ATF3 and ATF4 as the transcription factors that bind to NOXA promoter upon fluorizoline treatment. Furthermore, using ATF3 and ATF4 CRISPR HeLa and HAP1 cells, we confirmed that both factors mediate the induction of NOXA and apoptosis by fluorizoline. In conclusion, fluorizoline treatment triggers the activation of the ISR that results in the induction of ATF3 and ATF4, important regulators of NOXA transcription in fluorizoline-induced apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.