Abstract

Nicotine adenine dinucleotide phosphate (NADPH) oxidase (Nox) complexes are the main sources of reactive oxygen species (ROS) formation in the vessel wall. We have used DNA microarray, real-time PCR and Western blot to demonstrate that the subunit Nox4 is the major Nox isoform in primary human endothelial cells; we also found high levels of NADPH oxidase subunit p22 phox expression. Nox4 was localized by laser scanning confocal microscopy within the cytoplasm of endothelial cells. Endothelial Nox4 overexpression enhanced superoxide anion formation and phosphorylation of p38 MAPK. Nox4 down-regulation by shRNA has in contrast to TGF-β no effect on p38 MAPK phosphorylation. We conclude that Nox4 is the major Nox isoform in human endothelial cells, and forms an active complex with p22 phox. The Nox4-containing complex mediates formation of reactive oxygen species and p38 MAPK activation. This is a novel mechanism of redox-sensitive signaling in human endothelial cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.