Abstract

Doxorubicin is a highly effective cancer treatment whose use is severely limited by dose-dependent cardiotoxicity. It is well established that doxorubicin increases reactive oxygen species (ROS) production. In this study, we investigated contributions to doxorubicin cardiotoxicity from Nox2 NADPH oxidase, an important ROS source in cardiac cells, which is known to modulate several key processes underlying the myocardial response to injury. Nox2-deficient mice (Nox2-/-) and wild-type (WT) controls were injected with doxorubicin (12 mg/kg) or vehicle and studied 8 weeks later. Echocardiography indicated that doxorubicin-induced contractile dysfunction was attenuated in Nox2-/- versus WT mice (fractional shortening: 29.5±1.4 versus 25.7±1.0%; P<0.05). Similarly, in vivo pressure-volume analysis revealed that systolic and diastolic function was preserved in doxorubicin-treated Nox2-/- versus WT mice (ejection fraction: 52.6±2.5 versus 28.5±2.3%, LVdP/dtmin: -8,379±416 versus -5,198±527 mmHg s(-1); end-diastolic pressure-volume relation: 0.051±0.009 versus 0.114±0.012; P<0.001). Furthermore, in response to doxorubicin, Nox2-/- mice exhibited less myocardial atrophy, cardiomyocyte apoptosis, and interstitial fibrosis, together with reduced increases in profibrotic gene expression (procollagen IIIαI, transforming growth factor-β3, and connective tissue growth factor) and matrix metalloproteinase-9 activity, versus WT controls. These alterations were associated with beneficial changes in NADPH oxidase activity, oxidative/nitrosative stress, and inflammatory cell infiltration. We found that adverse effects of doxorubicin were attenuated by acute or chronic treatment with the AT1 receptor antagonist losartan, which is commonly used to reduce blood pressure. Our findings suggest that ROS specifically derived from Nox2 NADPH oxidase make a substantial contribution to several key processes underlying development of cardiac contractile dysfunction and remodeling associated with doxorubicin chemotherapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.