Abstract

Ischemia-reperfusion (IR) injury after lung transplantation, which affects both short- and long-term allograft survival, involves activation of NADPH oxidase 2 (NOX2) and activation of invariant natural killer T (iNKT) cells to produce IL-17. Adenosine A2A receptor (A2AR) agonists are known to potently attenuate lung IR injury and IL-17 production. However, mechanisms for iNKT cell activation after IR and A2AR agonist-mediated protection remain unclear. We tested the hypothesis that NOX2 mediates IL-17 production by iNKT cells after IR and that A2AR agonism prevents IR injury by blocking NOX2 activation in iNKT cells. An in vivo murine hilar ligation model of IR injury was used, in which left lungs underwent 1 hour of ischemia and 2 hours of reperfusion. Adoptive transfer of iNKT cells from p47(phox-/-) or NOX2(-/-) mice to Jα18(-/-) (iNKT cell-deficient) mice significantly attenuated lung IR injury and IL-17 production. Treatment with an A2AR agonist attenuated IR injury and IL-17 production in wild-type (WT) mice and in Jα18(-/-) mice reconstituted with WT, but not A2AR(-/-), iNKT cells. Furthermore, the A2AR agonist prevented IL-17 production by murine and human iNKT cells after acute hypoxia-reoxygenation by blocking p47(phox) phosphorylation, a critical step for NOX2 activation. NOX2 plays a key role in inducing iNKT cell-mediated IL-17 production and subsequent lung injury after IR. A primary mechanism for A2AR agonist-mediated protection entails inhibition of NOX2 in iNKT cells. Therefore, agonism of A2ARs on iNKT cells may be a novel therapeutic strategy to prevent primary graft dysfunction after lung transplantation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.