Abstract

Reactive oxygen species are well-known mediators of various biological responses. Recently, new homologues of the catalytic subunit of NADPH oxidase have been discovered in non-phagocytic cells. These new homologues (Nox1–Nox5) produce low levels of superoxides compared to the phagocytic homologue Nox2/gp91phox. Using Nox1 siRNA, we show that Nox1-dependent superoxide production affects the migration of HT29-D4 colonic adenocarcinoma cells on collagen-I. Nox1 inhibition or down-regulation led to a decrease of superoxide production and α2β1 integrin membrane availability. An addition of arachidonic acid stimulated Nox1-dependent superoxide production and HT29-D4 cell migration. Pharmacological evidences using phospholipase A2, lipoxygenases and protein kinase C inhibitors show that upstream regulation of Nox1 relies on arachidonic acid metabolism. Inhibition of 12-lipoxygenase decreased basal and arachidonic acid induced Nox1-dependent superoxide production and cell migration. Migration and ROS production inhibited by a 12-lipoxygenase inhibitor were restored by the addition of 12(S)-HETE, a downstream product of 12-lipoxygenase. Protein kinase C δ inhibition by rottlerin (and also GO6983) prevented Nox1-dependent superoxide production and inhibited cell migration, while other protein kinase C inhibitors were ineffective. We conclude that Nox1 activation by arachidonic acid metabolism occurs through 12-lipoxygenase and protein kinase C δ, and controls cell migration by affecting integrin α2 subunit turn-over.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.