Abstract

Information on Nitrogen oxide (NOx) concentrations play a significant role in aftertreatment systems. In this work, a method to estimate NOx emissions by means of mutual information (MI) and back propagation neural network (BPNN) was introduced. All measured signals were ranked by MI value and the most significant parameters were classified according to their physical meanings. The model inputs were selected by analysis of the classified groups. The forecasting model was developed by the BPNN algorithm to predict raw NOx emissions and NO mass flow rate (MFR) before Selective catalytic reduction (SCR) with selected input variables. Ranking, classification, selection, and training were carried out under steady-state conditions and the world harmonized stationary cycle. The verified BPNN network could well predict raw NOx emissions and NO MFR before SCR. Compared to static map prediction, the mean absolute deviation and root mean square error of BPNN are reduced by about 15%, which also indicated that the MI-based feature selection method was effective. The proposed approach is a generic approach for NOx emission prediction, which could also reduce the requirement for expert knowledge on feature selection, has a lower computational cost, and could be used in engine and aftertreatment control system of real driving vehicle.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.