Abstract
Tutte’s 3-Flow Conjecture suggests that every bridgeless graph with no 3-edge-cut can have its edges directed and labelled by the numbers 1 or 2 in such a way that at each vertex the sum of incoming values equals the sum of outgoing values. In this paper we show that Tutte’s 3-Flow Conjecture is true for Cayley graphs of groups whose Sylow 2-subgroup is a direct factor of the group; in particular, it is true for Cayley graphs of nilpotent groups. This improves a recent result of Potočnik et al. (Discrete Math. 297:119–127, 2005) concerning nowhere-zero 3-flows in abelian Cayley graphs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.