Abstract

Future climate change has been predicted to affect the potential distribution of plant species. However, only few studies have addressed how invasive species may respond to future climate change despite the known effects of plant species invasion on nutrient cycles, ecosystem functions, and agricultural yields. In this study, we predicted the potential distributions of two invasive species, Rumex crispus and Typha latifolia, under current and future (2050) climatic conditions. Future climate scenarios considered in our study include A1B, A2, A2A, B1, and B2A. We found that these two species will lose their habitat under the A1B, A2, A2A, and B1 scenarios. Their distributions will be maintained under future climatic conditions related to B2A scenarios, but the total area will be less than 10% of that under the current climatic condition. We also investigated variations of the most influential climatic variables that are likely to cause habitat loss of the two species. Our results demonstrate that rising mean annual temperature, variations of the coldest quarter, and precipitation of the coldest quarter are the main factors contributing to habitat loss of R. crispus. For T. latifolia, the main factors are rising mean annual temperature, variations in temperature of the coldest quarter, mean annual precipitation, and precipitation of the coldest quarter. These results demonstrate that the warmer and wetter climatic conditions of the coldest season (or month) will be mainly responsible for habitat loss of R. crispus and T. latifolia in the future. We also discuss uncertainties related to our study (and similar studies) and suggest that particular attention should be directed toward the manner in which invasive species cope with rapid climate changes because evolutionary change can be rapid for species that invade new areas.

Highlights

  • Species invasion has contributed to the extinction of native species [1], alteration of fire regimes [2], nutrient cycling [3], functioning of ecosystems [4], economic losses [5], reduction of agricultural yield [6], spreading of diseases [7], and gene pollution [8]

  • With AUC values of 0.896 and 0.902 for R. crispus and T. latifolia, respectively, the maximum entropy (MaxEnt) model performed a reliable prediction of the potential distributions of the two species

  • We found that for R. crispus, the mean temperature of the coldest quarter, mean annual temperature, and precipitation of the coldest quarter contribute the most to the potential distribution of the species (Table 1)

Read more

Summary

Introduction

Species invasion has contributed to the extinction of native species [1], alteration of fire regimes [2], nutrient cycling [3], functioning of ecosystems [4], economic losses [5], reduction of agricultural yield [6], spreading of diseases [7], and gene pollution [8]. Adaptive responses of invasive species to global climate change may result in more complex and robust invasion mechanisms in the long run. Given such uncertainty, a detailed understanding of the effect of climate change on invasive species is very important. A species can expand its geographic distribution in several areas to find more suitable climatic conditions [9], [10]. Regardless of whether these species expand or shrink their geographic distributions, an insight into their response to climatic variables, which is at the core of the invasion process, is essential [12]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call