Abstract

Species range shifts under climate change scenarios are caused by many factors. An integrative approach combining demographic distribution models (DDMs) and correlative models can provide key information for making accurate predictions, especially for widespread species occupying diverse environments. Sceloporus grammicus is a lizard that occurs widely in North America and shows variation in its life history traits among environments. Here we assessed future changes in the distribution of S. grammicus in Mexico using mechanistic, correlative, and hybrid models, under two (RCP 4.5 and RCP 8.5) contrasting climate change scenarios, based on two General Circulation Models (GCM: ACCESS 1.0 and MIROC5). We measured the snout-vent length (SVL) of individuals of S. grammicus from 11 populations from central Mexico and input this trait as an indicator of vital rates into integral projection models (IPMs). We used the IPMs to calculate the growth rate (λ) of each population; we then modeled λ as a function of temperature to project λ across a temperature raster layer of Mexico. The correlative models were built using occurrence records of S. grammicus and the key environmental variables. For each scenario and GCM, we first built a map that displayed λ values (> 0.9) across the country; we then built a map that showed habitat suitability probability. We then overlaid the results of these two maps to build a map displaying presence/absence. In general, the results revealed that sites with high habitat suitability probability and λ > 0.9 will decrease under both climate change scenarios, with the decrease being more severe in the RCP 8.5 scenario compared to the RCP 4.5 scenario. Outputs were similar for all projections. Our results predict a range contraction to higher and cooler places such as mountainous zones and were more restrictive under the hybrid approach. The use of this hybrid approach can overcome the weaknesses of correlative models and DDMs. This is the first study to project a range contraction for this species, and the results are consistent with previous observations of other species exhibiting distributional shifts towards the poles or upwards in elevation as the climate warms. However, S. grammicus may overcome the negative effects of climate change via its plasticity in habitat use, thermal preferences, and life history traits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.