Abstract

The article developed a methodology for nowcasting and short-term forecasting key Russian macroeconomic aggregates: real GDP, consumption, investment, export, import, using machine learning methods: boosting, elastic net, and random forest. The set of predictors included indicators of the stock market, money market, surveys, world prices for resources, price indices, and other statistical indicators of different frequency, from daily to quarterly. Our approach makes available a detailed examination of the changes in forecasts with the flow of new information. For most of the considered variables, a monotonic non-deterioration of the forecast quality was obtained with an expansion of available information. Furthermore, machine learning methods have shown significant superiority in predictive performance over naive prediction. The considered methods within the framework of the pseudo-experiment quickly showed a strong drop in real GDP, household consumption, and other variables in the context of the spread of the COVID-19 pandemic in the 2nd and 3rd quarters of 2020.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.