Abstract

AbstractNowcasting has become a useful tool for making timely predictions of gross domestic product (GDP) in a data‐rich environment. However, in developing economies this is more challenging due to substantial revisions in GDP data and the limited availability of predictor variables. Taking India as a leading case, we use a dynamic factor model nowcasting method to analyse these two issues. Firstly, we propose to compare nowcasts of the first release of GDP to those of the final release to assess differences in their predictability. Secondly, we expand a standard set of predictors typically used for nowcasting GDP with nominal and international series, in order to proxy the variation in missing employment and service sector variables in India. We find that the factor model improves over several benchmarks, including bridge equations, but only for the final GDP release and not for the first release. Also, the nominal and international series improve predictions over and above real series. This suggests that future studies of nowcasting in developing economies which have similar issues of data revisions and availability as India should be careful in analysing first‐ vs. final‐release GDP data, and may find that predictions are improved when additional variables from more timely international data sources are included.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.