Abstract
We propose a novel mixed-frequency dynamic factor model with time-varying parameters and stochastic volatility for macroeconomic nowcasting and develop a fast estimation algorithm. This enables us to generate forecast densities based on a large space of factor models. We apply our framework to nowcast US GDP growth in real time. Our results reveal that stochastic volatility seems to improve the accuracy of point forecasts the most, compared to the constant-parameter factor model. These gains are most prominent during unstable periods such as the Covid-19 pandemic. Finally, we highlight indicators driving the US GDP growth forecasts and associated downside risks in real time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.