Abstract

A recurring proof obligation in modern mathematics, ranging from textbook exercises to deep research problems, is to show that a given function is a morphism in some category: in analysis and topology, for example, we frequently need to prove that functions are continuous, while in group theory we are constantly concerned with homomorphisms. This paper describes a generic procedure that automatically discharges routine instances of this kind of proof obligation in an interactive theorem prover. The proof procedure has been implemented and found very useful in a mathematical case studies carried out using the ProofPower system

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.