Abstract

AbstractThe paper presents detailed mineralogical and structural characteristics of novograblenovite that occurs abundantly on a burning coal dump at Radlin, Upper Silesia, Poland. Our results indicate that NH4MgCl3⋅6H2O is the proper formula of this mineral. The thermal behaviour of novograblenovite shows a two-step dehydration at 155 and 193°C and sublimation of NH4Cl at 341°C. A Raman spectrum, obtained for the first time, reveals the normal modes of H2O and NH4+ vibrations. The crystal structure of novograblenovite was refined on the basis of high quality X-ray diffraction data. The final discrepancy factor wR2 was 0.0567 for 94 parameters and 1464 independent reflections. The structure has a monoclinic C2/c space group symmetry with the following unit cell parameters: a = 9.2709(3) Å, b = 9.5361(2) Å, c = 13.2741(4) Å and β = 90.054(3)°. We were able to specify the architecture of the disordered NH4+ cation located at the symmetry centre. This led to reasonable parameters for the H-bonding formed by this cation. In carnallite the K+ cations occupy an identical space to the ammonium ion in novograblenovite, but when embedded into the latter crystal structure it is bound less tightly. Voids occupy 14% of the space in the novograblenovite crystal structure. Novograblenovite is exactly the same phase as the ‘redikortsevite’ described previously from Chelabinsk coal dumps and this informally introduced name should be abandoned.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.