Abstract

Because of the critical role of the DNA topoisomerases in the synthesis and conformation of DNA, and the well-known observation that radiation inhibits replicative DNA synthesis, we have examined the possibility that inhibitors of these enzymes might influence radiation lethality. In particular, using protocols involving the administration of either fresh or conditioned medium, we examined the ability of intercalative and nonintercalative inhibitors to affect the expression of potentially lethal damage and/or sublethal damage. The inhibitors examined were amsacrine, teniposide, etoposide, and novobiocin; only the latter compound was clearly effective in a selective way at nontoxic concentrations, and this was observed specifically in reference to the repair of potentially lethal damage effected by incubation in conditioned medium. These results are another example of differences between the repair of sublethal versus potentially lethal damage that further support distinctions between the two. At a mechanistic level, these and other data suggest that the property of novobiocin that is relevant in the foregoing is its metabolic inhibition of replicative DNA synthesis, a process which may be more important in the repair of potentially lethal damage as opposed to sublethal damage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.