Abstract

Abstract The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon–Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath’s temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon–Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call