Abstract

The dentate gyrus (DG) and its primary cell type, the granule cell (GC), are thought to be critical to many cognitive functions. A major neuronal subtype of the DG is the hilar mossy cell (MC). MCs have been considered to play an important role in cognition, but in vivo studies to understand the activity of MCs during cognitive tasks are challenging because the experiments usually involve trauma to the overlying hippocampus or DG, which kills hilar neurons. In addition, restraint typically occurs, and MC activity is reduced by brief restraint stress. Social isolation often occurs and is potentially confounding. Therefore, we used c-fos protein expression to understand when MCs are active in vivo in socially housed adult C57BL/6 mice in their home cage. We focused on c-fos protein expression after animals explored novel objects, based on previous work which showed that MCs express c-fos protein readily in response to a novel housing location. Also, MCs are required for the training component of the novel object location task and novelty-encoding during a food-related task. GluR2/3 was used as a marker of MCs. The results showed that MC c-fos protein is greatly increased after exposure to novel objects, especially in ventral DG. We also found that novel objects produced higher c-fos levels than familiar objects. Interestingly, a small subset of neurons that did not express GluR2/3 also increased c-fos protein after novel object exposure. In contrast, GCs appeared relatively insensitive. The results support a growing appreciation of the role of the DG in novelty detection and novel object recognition, where hilar neurons and especially MCs are very sensitive.

Highlights

  • The dentate gyrus (DG) is a region within the hippocampus that receives its major input from the entorhinal cortex (EC) via the perforant path (PP) and projects to area CA3 of the hippocampus

  • We examined the role of mossy cell (MC) in the detection of novel vs. familiar objects in a paradigm resembling novel object recognition (NOR), while limiting environmental and spatial novelty and controlling for new experiences. c-Fos was used as a proxy to measure neural activity in the hilus and granule cell (GC) layer (GCL) across the hippocampal axis

  • The results suggest that increased hilar c-fos was not accompanied by much change in GCL c-fos, which seems surprising if ventral MCs are active and project to dorsal GCs [28, 80]

Read more

Summary

Introduction

The dentate gyrus (DG) is a region within the hippocampus that receives its major input from the entorhinal cortex (EC) via the perforant path (PP) and projects to area CA3 of the hippocampus. Based on this anatomical organization, it has been suggested that the DG contributes to the processing of cortical input before it reaches area CA3. Several possibilities for this role as a “preprocessor” have been suggested, with common views suggesting that the DG “sparsifies” or functions as a “pattern separator” of the diverse input it receives from the EC [1,2,3,4]. We focused on the role of the DG in the detection of novel aspects of the environment

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call