Abstract
Eight novel Zn(II) complexes with substituted 1,3-diphenyl-4-(arylazo)pyrazol-5-one (L1-L4) derivatives have been synthesized and elucidated using various physicochemical techniques. Quantum mechanical calculations of energies, geometries were done by DFT using B3LYP/GEN functional combined with 6.311G (d,p) and LAN2DZ basis sets. The analyses of HOMO and LUMO have been used to explain the charge transfer within the ligands and complexes. The calculated small energy gap between HOMO and LUMO energies shows that the charge transfer occurs within Zn(II) complexes. Geometrical parameters, molecular electrostatic potential maps (MEP) and total electron densities analyses of the ligands and their Zn complexes have been carried out. Molecular stability, hyperconjugative interactions, intramolecular charge transfer (ICT) and bond strength has been investigated by the applying of natural bond orbital (NBO) analysis. Total static dipole moment (μ), the mean polarizability (<α>), the anisotropy of the polarizability (Δα), the mean first-order hyperpolarizability (<β>) have been also performed. The obtained values show that Zn(II) complexes is brilliant candidate to NLO materials. The analyses of the 1:1 complexes indicate that the Zn(II) ion is five-coordinated with water molecules at axial position in case of L1, L2 and L4 whereas, six-coordinated with L3 and non-electrolytic behaviour of complexes indicates the absence of counter ion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.