Abstract

A simple hydrothermal method was used to fabricate a novel series of heterostructured Zn0.8Cd0.2S/g-C3N4 photocatalysts. The photocatalytic activity of the Zn0.8Cd0.2S/g-C3N4 was evaluated by the degradation of methylene blue (MB) under visible light irradiation. The as-prepared heterostructured Zn0.8Cd0.2S/g-C3N4 heterostructures showed enhanced photocatalytic activity for the degradation of MB, with compared to the pure Zn0.8Cd0.2S and g-C3N4. An optimum photocatalytic activity was observed over 50wt% Zn0.8Cd0.2S incorporated g-C3N4 nanocomposite. The superior photocatalytic performance of Zn0.8Cd0.2S/g-C3N4 could be ascribed to its strong absorption in the visible region and low recombination rates of photoinduced electron–hole pairs because of the heterojunction formed between Zn0.8Cd0.2S and g-C3N4. We proposed the scheme for electron-hole separation and transport for the visible-light-driven Zn0.8Cd0.2S/g-C3N4 hybrid photocatalyst. It was found that the photodegradation of MB molecules is mainly attributed to the oxidation action of the generated O2− radicals and partly to the action of hvb+ via direct hole oxidation process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.