Abstract
Semiconductor photocatalytic technology is an effective strategy to cope with the current environmental issues. Therefore, the development of low-cost and environment-friendly catalysts with high efficacy has become a research focus and emphasis. Herein, novel Z-scheme In2S3/Bi2WO6 core-shell structure composites were controllably prepared by template and hydrothermal route. Highly improved photocatalytic degradation of tetracycline hydrochloride (TCH) over In2S3/Bi2WO6 core-shell composites was observed under visible-light (VL) irradiation (∼96.0%), which was 2.4 and 2.1 folds higher than that of In2S3 and Bi2WO6, respectively. The excellent oxygen activation and catalytic performance was ascribed to the synergistic effects of built-in electric field to ensure easy charge exchange at the interface of In2S3 and Bi2WO6, Z-scheme charge transfer path and the extended range of VL absorption. Superoxide radical (·O- 2) and hydroxyl (·OH) radicals were verified to be involved in the photocatalytic reaction by the active species capture experiment and the electron spin response (ESR) detection. The recycling experiments demonstrate the excellent stability and reusability of the In2S3/Bi2WO6. In addition, in accordance with the experimental results, the highly efficient Z-scheme photocatalytic mechanism and degradation paths were proposed. This work provided a new way for preparation of Z-scheme core-shell composites which had broad applications prospect in environmental remediation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.