Abstract
Inspired by the highly effective and broad-spectrum antifungal activity of ergosterol biosynthesis inhibitions, a series of novel 1,2,4-triazole derivatives containing oxime ether moiety were constructed for screening the bioactivity against phytopathogenic fungi. The (Z)- and (E)-isomers of target compounds were successfully separated and identified by the spectroscopy and single crystal X-ray diffraction analyses. The bioassay results showed that the (Z)-isomers of target compounds possessed higher antifungal activity than the (E)-isomers. Strikingly, the compound (Z)-5o exhibited excellent antifungal activity against Rhizoctonia solani with the EC50 value of 0.41μg/mL in vitro and preventive effect of 94.58% in vivo at 200μg/mL, which was comparable to the positive control tebuconazole. The scanning electron microscopy observation indicated that the compound (Z)-5o caused the mycelial morphology to become wizened and wrinkled. The molecular docking modes of (Z)-5o and (E)-5o with the potential target protein RsCYP51 were especially compared. And the main interactions between ligands and amino acid residues were carefully analyzed to preliminarily explain the mechanism leading to the difference of activity between two isomers. The study provided a new lead molecular skeleton for developing novel triazole fungicides targeting ergosterol biosynthesis.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.